Overview of the Airline Planning Process

Dr. Peter Belobaba

Istanbul Technical University
Air Transportation Management
M.Sc. Program

Network, Fleet and Schedule
Strategic Planning
Module 2: 10 March 2014
Lecture Outline

• Basic Airline Profit Model
 ▪ Fundamental Strategies to Improve Profitability

• Airline Planning Decisions
 ▪ Fleet Planning
 ▪ Route Evaluation
 ▪ Schedule Development
 ▪ Pricing and Revenue Management
 ▪ Operations Control

• Airline Organizational Structure
Basic Airline Profit Model

Operating Profit = Revenues - Operating Expense

Operating Profit = RPK x Yield - ASK x Unit Cost

• Use of individual terms in this profit equation to measure airline success can be misleading:
 ▪ High Yield is not desirable if ALF is too low; in general, Yield is a poor indicator of airline profitability
 ▪ Low Unit Cost is of little value if Revenues are weak
 ▪ Even ALF on its own tells us little about profitability, as high ALF could be the result of extremely low fares (yields)

• Profit maximizing strategy is to increase revenues, decrease costs, but the above terms are interrelated.
Strategies to Increase Revenues

• Increase Traffic Carried (RPKs):
 ▪ Reduce fares (average yields) to stimulate traffic, but revenue impact depends on demand elasticity
 ▪ For revenues to increase, price cut must generate disproportionate increase in total demand (i.e., “elastic demand”)
 ▪ Alternatively, frequency or service quality can be increased to attract passengers, but both actions also increase operating costs

• Increase Fares (Yields):
 ▪ Economic theory tells us any price increase will lead to an inevitable traffic decrease, but a price increase can still be revenue positive if demand is “inelastic” (i.e., percent decrease in passengers is lower than percent increase in price).
Strategies to Reduce Costs

- **Reduce Unit Costs (Cost per ASK):**
 - Reduce service quality, but too many cuts can affect consumers’ view of the airline’s product, leading to a reduced RPKs and market share
 - Increase ASKs by flying more flights and larger airplanes, which can lower unit costs but lead to higher total operating costs and lower load factors

- **Reduce Airline Output (Decrease ASKs):**
 - Cutting back on number of flights will reduce total operating costs, but lower frequencies lead to market share losses (lower RPKs)
 - Reduced frequencies and/or use of smaller aircraft can result in higher unit costs, as fixed costs are spread over fewer ASKs.
Airline Planning Decisions

1. **FLEET PLANNING**: What aircraft to acquire/retire, when and how many?

2. **ROUTE EVALUATION**: What network structure to operate and city-pairs to be served?

3. **SCHEDULE DEVELOPMENT**: How often, at what times and with which aircraft on each route?

4. **PRICING**: What products, fares and restrictions for each O-D market?

5. **REVENUE MANAGEMENT**: How many bookings to accept, by type of fare, to maximize revenue over the network?

6. **OPERATIONS CONTROL**: Implementing planned schedule of operations, given airport and air traffic control constraints.
Fleet Planning

Route Planning

Schedule Development
- Frequency Planning
- Timetable Development
- Fleet Assignment
- Aircraft Rotations

Pricing

Crew Scheduling

Revenue Management

Sales and Distribution

Airport Resource Management

Operations Control

SOURCE: Prof. C. Barnhart
1. FLEET PLANNING

• Fleet composition is long-term strategic decision and largest capital investment for an airline
 ▪ Affects financial position, operating costs, and especially the ability to serve specific routes.

• Economics of fleet choice
 ▪ Lower operating costs vs. higher ownership costs of new aircraft
 ▪ Lower trip costs of smaller aircraft vs. lower unit costs (CASK) and greater revenue generation of larger aircraft

• Fleet evaluations depend on aggregate analysis
 ▪ Detailed network profitability models seldom used given tremendous uncertainty of future demand, costs, competition
 ▪ “Top-down” economic and financial impacts evaluated with spreadsheets, NPV analysis and scenario-building
2. ROUTE EVALUATION

• Given a fleet, determination of routes to be flown
 ▪ Network structure (hub/spoke, point-to-point or hybrid)

• Evaluation approach at a disaggregate (route) level:
 ▪ Demand, market share and revenue forecasts required for specific route, perhaps for multiple years into the future
 ▪ Aircraft performance and operating cost characteristics

• Route planning decision factors
 ▪ Availability of aircraft with adequate range and capacity – link to fleet plan and overall network strategy
 ▪ Operational constraints and aircraft/crew rotation issues
 ▪ Regulations, bilaterals, and limited airport slots
 ▪ Opportunity cost of using aircraft on this route
 ▪ Degree of competition and expected competitive response
Example: Airline “Profit Manager”

1. Schedule Building
 - Host Airline and OAL Schedule
 - Connection Building Rules

2. Demand forecast
 - Market Share Model
 - Forecast Market Share by Itinerary

3. Traffic allocation
 - Market Sizes
 - Forecast Demand by Itinerary
 - Spill and Recapture Models
 - Estimate Traffic by Itinerary

4. Revenue and Cost Allocation
 - Revenues
 - Assign Revenues
 - Assign Costs
 - Direct Cost Allocation Rules

 Display Results
3. SCHEDULE DEVELOPMENT

- Involves several interrelated decisions, which to date have not been fully integrated:

 Frequency Planning: Number of departures to be offered on each route, non-stop versus multi-stop

 Timetable Development: Flight departure and arrival times, including connections at airline hubs

 Fleet Assignment: Aircraft type for each flight, based on demand and operating cost estimates

 Aircraft Rotation Planning: Links consecutive flights to ensure balanced aircraft flows on the network.
Integrated Scheduling Planning Process: Key Decisions

1. **Network Planning**
 - **Network Plan** 24-60 months
 - **Fleet Plan** 24-60 months

2. **Fleet Planning**
 - **Network Plan** 12-60 months
 - **Fleet Plan** adjustments

3. **Schedule Development**
 - **Schedule** 6-12 months
 - **New Fleet allocation**

4. **Schedule Revision**
 - **Fleet re-allocation between Bases**
 - **Schedule** 3-6 months

5. **Operational Plan** 0-12 months

- 60-24 months
- 24-12 months
- 12-6 months
- 6-3 months
- 3 months – 3 days
4. PRICING DECISIONS

• “Differential pricing” by airlines is universal:
 ▪ Different “fare products” within the coach cabin, with different restrictions, at different prices
 ▪ Virtually every airline in the world offers multiple price points (even low-fare carriers with “simplified” fare structures)

• “Pricing Decision Support Systems”
 ▪ Difficult to estimate price elasticity, willingness to pay, potential for stimulation and diversion
 ▪ No practical tools for airlines to determine “optimal” prices
 ▪ Primarily monitoring of competitive price changes

• Dominant practice is still to *match* low fares to fill planes and retain market share
 ▪ Need to match exacerbated by web sites and search engines
5. REVENUE MANAGEMENT

• Seat inventory control to maximize revenues
 ▪ Given a scheduled flight, capacity and prices, how many bookings to accept by fare type
 ▪ Objective is to maximize revenue -- fill each seat with highest possible revenue

• Computerized RM systems based on demand forecasting and revenue optimization:
 ▪ Leg-based RM systems increase revenues by 4-6%
 ▪ Network RM systems more sophisticated, add another 1-2%

• Recent industry developments affect RM systems
 ▪ Fare simplification and “fare family” bundling require new approaches to forecasting and optimization
 ▪ Alliance code-share traffic complicates both RM and distribution
RM Strategy Affects Yield, Load Factor, Average Fare and Revenues

EXAMPLE: 2100 MILE FLIGHT LEG

CAPACITY = 200

<table>
<thead>
<tr>
<th>FARE CLASS</th>
<th>AVERAGE REVENUE</th>
<th>YIELD EMPHASIS</th>
<th>LOAD FACTOR EMPHASIS</th>
<th>REVENUE EMPHASIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>$420</td>
<td>20</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>B</td>
<td>$360</td>
<td>23</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>H</td>
<td>$230</td>
<td>22</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>V</td>
<td>$180</td>
<td>30</td>
<td>55</td>
<td>37</td>
</tr>
<tr>
<td>Q</td>
<td>$120</td>
<td>15</td>
<td>68</td>
<td>40</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL PASSENGERS</td>
<td>110</td>
<td>160</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>LOAD FACTOR</td>
<td>55%</td>
<td>80%</td>
<td>68%</td>
<td></td>
</tr>
<tr>
<td>TOTAL REVENUE</td>
<td>$28,940</td>
<td>$30,160</td>
<td>$31,250</td>
<td></td>
</tr>
<tr>
<td>AVERAGE FARE</td>
<td>$263</td>
<td>$189</td>
<td>$230</td>
<td></td>
</tr>
<tr>
<td>YIELD (CENTS/RPM)</td>
<td>12.53</td>
<td>8.98</td>
<td>10.94</td>
<td></td>
</tr>
</tbody>
</table>
6. OPERATIONS CONTROL

- Coordinate the daily operations of the airline on a dynamic basis.

- Ensure completion of schedule plan within company goals for on-time performance and safety.

- Process passengers, baggage and cargo subject to numerous operational constraints:
 - Limited number of gates, many with constraints on aircraft size
 - Airport flow limitations on taxiways and runways
 - Availability of airport and ground crew resources
 - Weather (both local and en route) as well as airport field conditions
 - Air traffic control (ATC) congestion and delays
Airline Planning and Operations

Network Planning

Revenue Management

Distribution CRS

Airline Ops Control
- Dispatch
- Maint
- Crew
- Station
- etc.

Aircraft

ATC

Passenger Processing

Flight Schedule

Seat Inventory (ASM)

Sched & Pricing

Reservations

Passengers

Payload:
- Passengers
- Baggage
- Cargo

Business Loop
- Controls RASM

Operational Loop
- Controls CASM

Travel Demand

Load Factor
- Yields
- RPMs
- RASM

Source: Prof. John Hansman
IT Systems: Planning and Distribution

CRS/GDS

- DISTRIBUTION FUNCTIONS
 SCHEDULES AND AVAILABILITY
- PRICING FUNCTIONS
 FARE QUOTES AND RULES
- SALES FUNCTIONS
 BOOKING AND TICKETING

AIRLINE “RES”

- FLIGHT RECORDS AND OPERATIONS DATA
- INVENTORY RECORDS
 SEAT AVAILABILITY
- FARES AND RULES
 DATABASE
- PNR DATABASE
- CUSTOMER DATABASE

AIRLINE PLANNING SYSTEMS

- SCHEDULE OPTIMIZATION
- CREW/AIRCRAFT PLANNING
- REVENUE MANAGEMENT
- PRICING DECISION SUPPORT

DEPARTURE CHECK-IN

FLIGHT DISPATCH

AIRLINE STAFF AT AIRPORT

TRAVEL AGENCY
Integrated Airline Planning Models

• Current practice is to perform scheduling, pricing and RM sequentially.

• Integrated models would *jointly* optimize schedules, capacity, prices, and seat inventories:
 ▪ Better feedback from pricing and RM systems can affect optimal choice of schedule and aircraft
 ▪ Better choice of schedule and capacity can reduce need for excessive discounting and “fare wars”

• Joint optimization and planning is a big challenge:
 ▪ Research is still required to identify models that can capture dynamics and competitive behaviors
 ▪ Organizational coordination within airlines and willingness to accept large-scale decision tool
Example: Airline Organizational Structure