

Demand and Supply

Istanbul Technical University Air Transportation Management, M.Sc. Program Aviation Economics and Financial Analysis Module 6

12 November 2014

Outline

• Main characteristics of supply in the airline industry

- Perishability (airline seats cannot be inventoried)
- Excess capacity
- S-curve effect
- Main characteristics of demand in the airline industry
 - Derived demand
 - Determinants of demand
 - Market demand segmentation
 - Different classes/types of passengers
 - Different classes/types of freight
 - Demand elasticities

Supply

Airline supplyPerishability of seats

- · seats cannot be inventoried for future sale
- once flight takes off, empty seats cannot be sold
- Joint production of seats in different fare classes
 - Airline can provide both full fare and discount seats on same flight
 - Previously, price sensitive leisure travel serviced by charters with business travel on network airlines
- Chronic overcapacity of seats
 - Load factors average around 70%
 - 30% of seats are unsold,
 - Load factors are usually lower on short haul and small aircraft routes
 - 777 83%
 - RJ 70%

Excess Capacity

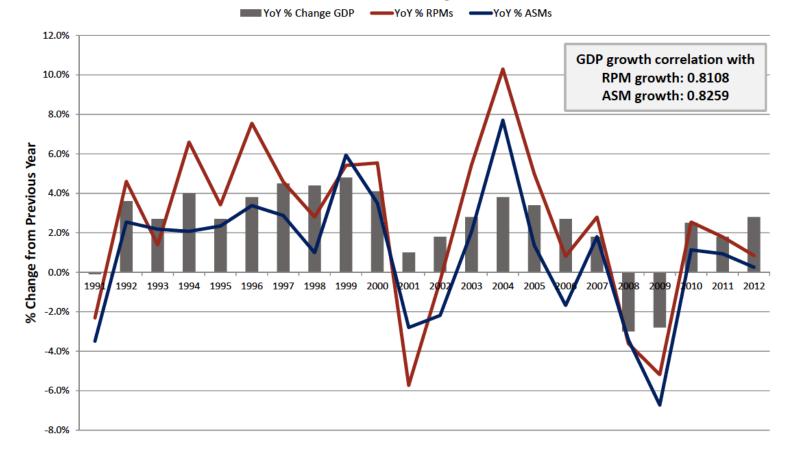
- Supply commonly exceeds demand in the industry
- This is not necessarily an issue
 - 100% load factors would leave many customers willing to pay for a flight
- The higher the load factor, the higher the probability that passengers will not be able to book a seat on their preferred flight
 - This is called 'spill'

Global load factors

2012 vs. 2011	RPK Growth	ASK Growth	PLF	FTK Growth	AFTK Growth
International	6.0%	4.0%	78.9	-1.9%	0.6%
Domestic	4.0%	3.8%	79.5	1.4%	-1.2%
Total Market	5.3%	3.9%	79.1	-1.5%	0.2%

Source: IATA, Air Transport Market Analysis, December 2012

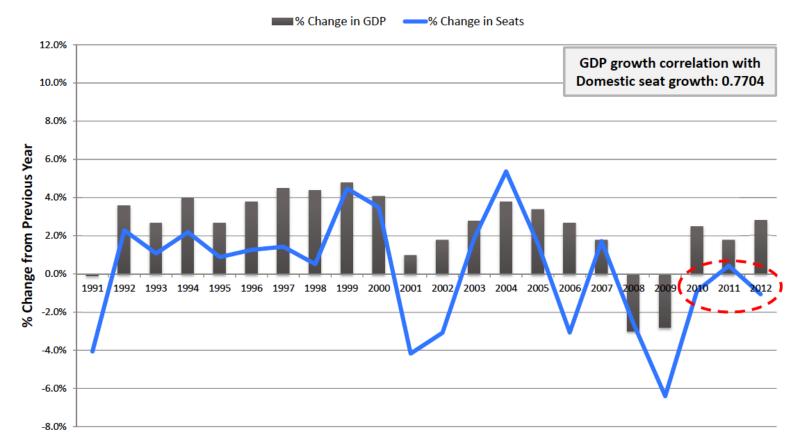
Regional load factors


Year on Year Comparison	Sep	2013 vs Sep	2012
Companison	RPK	ASK	2013 PLF
Africa	6.9%	7.4%	73.2%
Asia/Pacific	8.5%	7.1%	78.1%
Europe	3.4%	3.1%	83.9%
Latin America	8.3%	6.1%	80.9%
Middle East	10.4%	13.0%	77.2%
North America	2.3%	3.1%	83.9%
International	5.7%	5.7%	80.9%
Australia	2.6%	1.9%	78.1%
Brazil	1.0%	-1.9%	78.1%
China P.R.	10.6%	12.1%	80.2%
India	16.4%	5.7%	71.5%
Japan	7.8%	7.5%	69.3%
Russian Federation	12.1%	11.2%	78.7%
US	1.4%	1.0%	81.0%
Domestic	5.1%	4.7%	79.1%
Africa	5.7%	6.0%	73.7%
Asia/Pacific	9.2%	8.4%	78.0%
Europe	3.7%	3.2%	83.1%
Latin America	6.5%	4.0%	79.5%
Middle East	9.5%	12.5%	77.2%
North America	1.7%	1.8%	82.0%
Total Market RPK: Revenue-Passenger-Kilome	5.5%	5.3%	80.3%

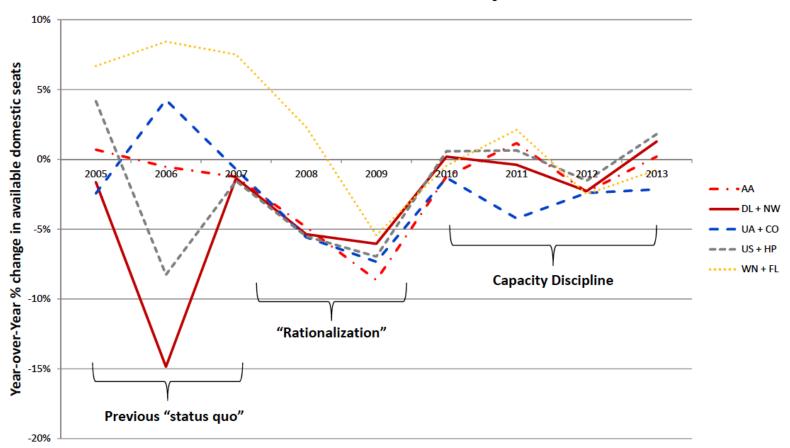
Source: IATA, September 2013

RPK: Revenue-Passenger-Kilometers; ASK: Available-Seat-Kilometers; PLF: Passenger-Load-Factor; All Figures are expressed in % change Year on Year except PLFwhich are the load factors for the specific month.

Recent Changes in U.S. Data-Capacity Discipline

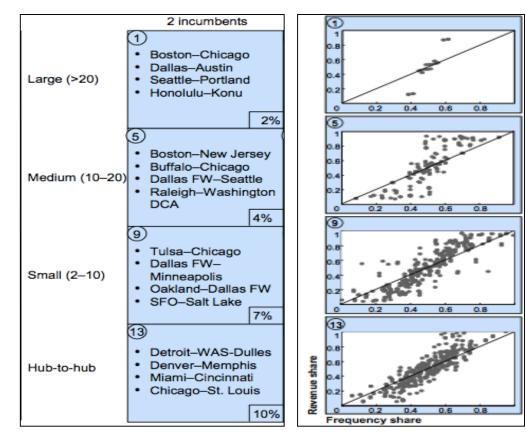

Growth in Domestic ASMs and RPMs is Still Tied Closely to GDP

Source: Michael Wittman, *New Horizons in U.S. Airline Capacity Management: From Rationalization to "Capacity Discipline*", MIT International Center for Air Transportation, November 2013


A Break in the Pattern? Domestic Seat Departures Have Recently Fallen Despite GDP Growth

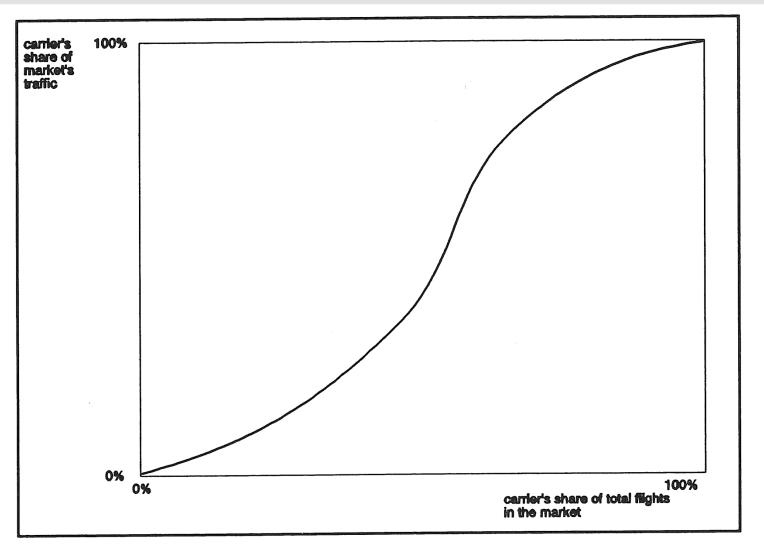
Source: Michael Wittman, *New Horizons in U.S. Airline Capacity Management: From Rationalization to "Capacity Discipline*", MIT International Center for Air Transportation, November 2013

InterVISTAS


The Last Nine Years of Domestic Aviation Can Be Divided Into Three Epochs

Source: Michael Wittman, *New Horizons in U.S. Airline Capacity Management: From Rationalization to "Capacity Discipline*", MIT International Center for Air Transportation, November 2013

InterVISTAS


• Reason 1: Schedule frequency disproportionately increases revenues (the S-curve phenomenon).

Source: McKinsey analysis for IATA, 2006

The S-Curve effect

Source: Tretheway and Oum (1992)

- Reason 2: the addition of new network points geometrically increases product lines (citypair markets)
 - If number of network points connected to a hub increases from
 - 9 to 14 (5 additional points),
 - But potential additional city pairs 45 to 105 (50 additional city-pairs).
 - A roughly 50% increase in points, increase number of markets (products) by 122%

Source: Dempsey and Gesell (2006)

- Reason 3: There is a time lag between order and delivery of aircraft
 - airlines increase aircraft orders aggressively when economy is strong
 - But take delivery during weak part of economic cycle

- Reason 4: High fixed costs provide an incentive to use aircraft even when demand is low
 - parked aircraft do not generate revenue
 - Yet the carrier incurs fixed costs of ownership
 - It may be more sensible to fly the aircraft at a loss, so that some contribution to the fixed costs can be made
 - The flight must generate at least enough revenue to cover the incremental flying costs of the flight (fuel, crew, catering, maintenance)
 - Any additional revenue contributes to fixed costs

Source: Dempsey and Gesell (2006)

- Stephen Wolf of United Airlines:
 - "In a truly free market (...) oversupply would be temporary. That is, the least efficient producers will exit the market.
 - U.S. bankruptcy laws, however, in effect displace the realities of the marketplace and have now become a barrier to exit. Carriers are able to operate literally for years without repaying their debt obligations; consequently, their capacity is artificially retained in the system (...)"

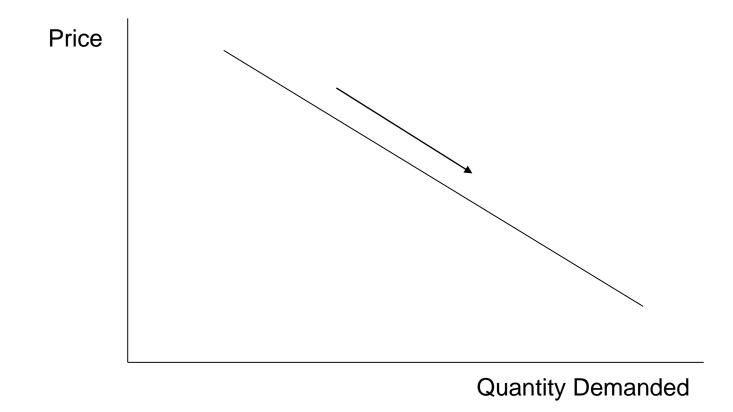
Source: S. Wolf, Where Do We Go From Here? (1995)

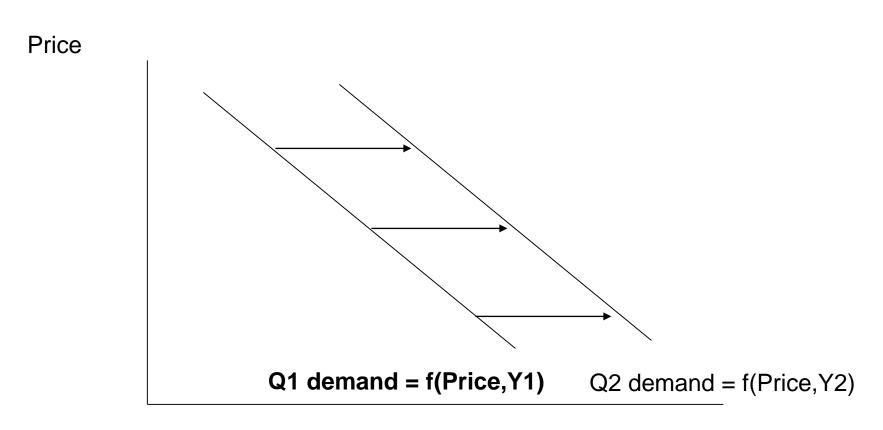
Structural Oversupply

- Why would structural overcapacity occur?
 - Large and indivisible capital
 - Long planning horizons
 - Incentives for firms to defer capacity adjustment
 - Subsidies to capital expansion
- What to look for
 - Profit over business cycle
 - Return on invested capital
 - Bankruptcies and reorganizations
 - Capacity utilization

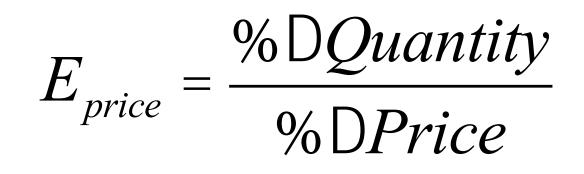
Structural Oversupply - Myth or Reality?

- Demand forecasts of +5.4% annually (IATA)
- Profitability is rising with less volatility over business cycle
- Airlines exhibiting capacity discipline (Metal Neutral Joint Ventures)
- Capacity utilization is trending upward
- Aircraft more nimble (B787) in serving a broader range of markets


Demand


Change in demand

• Quantity demanded = f (Price)


Shift in demand

Quantity Demanded

Elasticity

 $\frac{\&\Delta Quantity}{\&\Delta Income}$ E_{Income}

Elasticity

• Example:

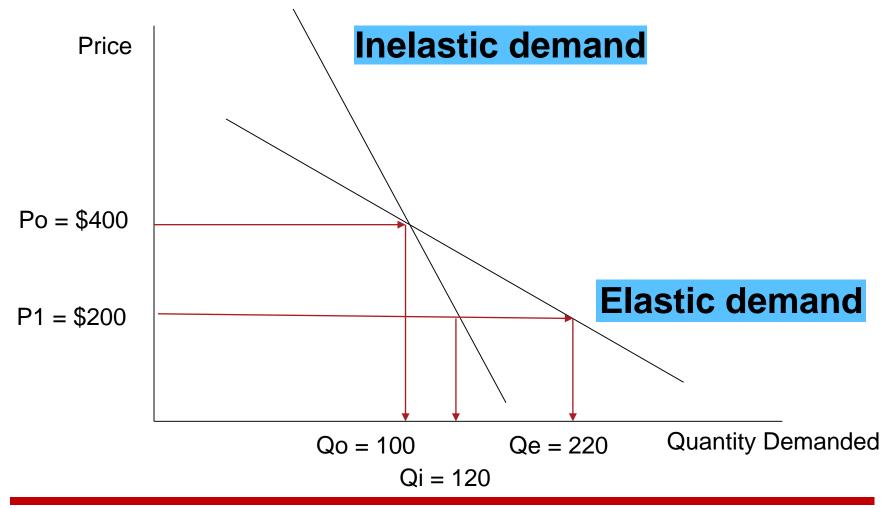
- 10% increase in price
- Traffic drops by 12%
- Thus elasticity = -1.2

= -12% / 10%

Actual airline demand elasticities

Demand is

- Elastic if $|\epsilon| > 1$
- Unit elastic if $|\epsilon| = 1$
- Inelastic if $|\epsilon| < 1$


Typical price elasticities

- First Class -0.81
- Economy Class -1.00 1.20
- Discount -1.60 2.00
- Typical Income elasticity 1.80

InterVISTAS Consulting produced major study of airline demand elasticities for IATA

Elastic vs inelastic demand in a diagram

Factors that affect demand

• Factors that affect airline demand:

- Price
- Income
- Travel time
- Demographics
 - population
 - age distribution of population
 - cultural ties between cities
- · Price and convenience of other modes of transport
- Price and convenience of competing airlines
- Frequency of service
- Timing of service

Source: Tretheway and Oum (1992)

Factors that affect demand – cont.

- Day of the week
- Season
- Amenities (and price of amenities)
 - food quality
 - entertainment
 - seat width / seat pitch
- Customer loyalty
 - Frequent Flyer Programs
 - Corporate travel programs, where benefits are provided for commitment for large share of travel
- Safety and security
- Distance

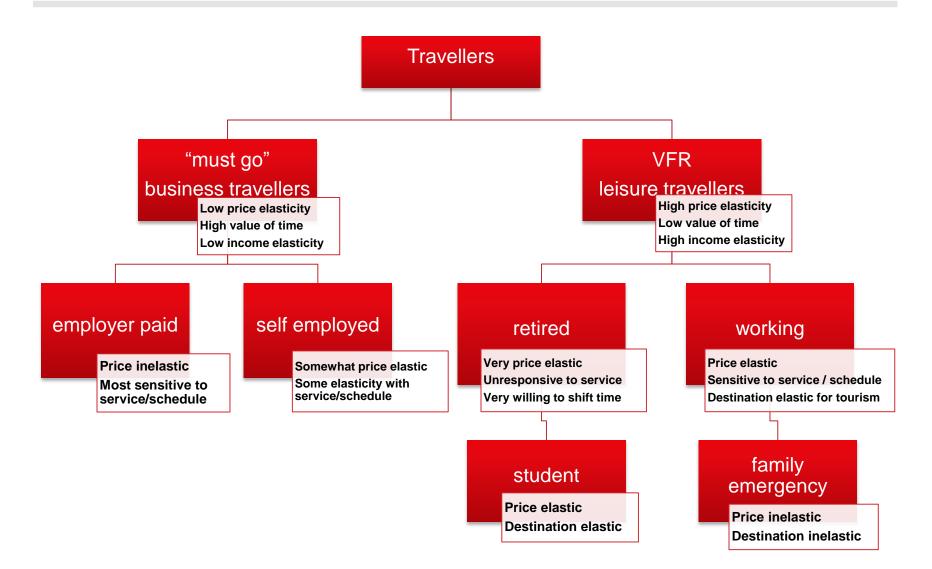
Source: Tretheway and Oum (1992)

The key factors

- Price
 - Lower fares lead to higher demand
- Frequency of service
 - More important for business travellers
 - One study found that doubling frequency would lead to a 20% increase in demand for business but only a 5% increase for leisure travellers

Income

- Air travel is pro-cyclic
 - When economy drops 5%, air travel may drop 9%



Derived demand

- Air Travel is a *derived* demand
 - People do not buy airline product simply because they want to fly
 - They buy airline product as part of another activity
 - A leisure experience
 - A business engagement
 - We say airline demand is derived from demand for leisure or business engagements, etc.
 - Thus airline demand is affected by prices and other aspects of other elements
 - Low hotel prices stimulate demand for air travel

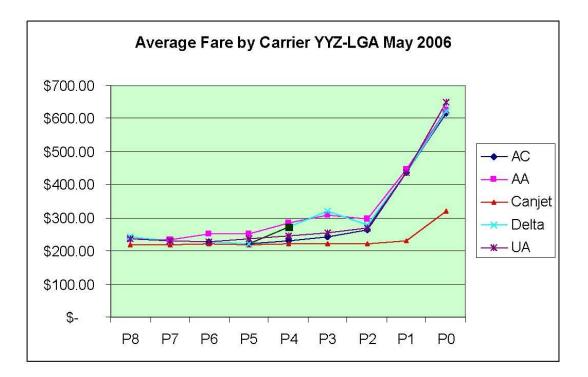
Segmentation of Market Demand

Leisure vs. business

- Leisure travellers:
 - Travel on personal time
 - Low time sensitivity
 - High price sensitivity
 - Travel is generally booked in advance
- Business travellers:
 - Travel is on company time
 - High time sensitivity frequency is important factor
 - Lower price sensitivity

• Flexibility is also important – last minute bookings Source: Tretheway and Oum (1992)

Price discrimination in the airline business



- airline has ability to charge two consumers different fares
 - consumers of discount fare have no ability to sell their seat to a full fare consumer
- airlines differentiate the product
 - Ex) full fare seats allow flexibility to change travel plans
- airlines recognise that full fare product is often bought close to date of flight
- discount seats can be bought much earlier and are usually sold with restrictions
- Price discrimination
 - Sell flexible product at full fare
 - Sell a restricted product at lower fare, but with advance purchase

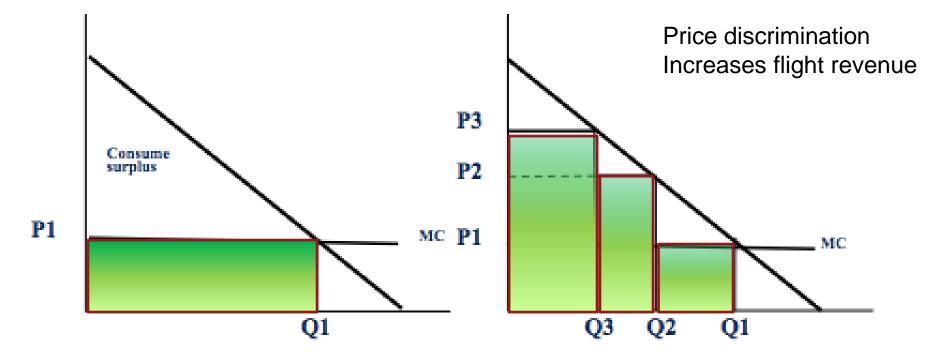
Inter-Temporal Price Discrimination

- Can extract value from last minute booking passenger
- Varies with
 number of
 competitors
- Varies across markets

Gillen and Hazledine (2011) The New Pricing in North American Air Travel Markets: Implications for Competition and Antitrust

 Airlines offer low fares, at off-peak times, with advance purchase requirements and other restrictions, to attract VFR traveller, but they must avoid diversion or cross over of "must go" travellers to the low fare product

- Airlines use restrictions on tickets
 - Segment full fare market from discount fare as much as possible using *fences* on cheaper tickets



Demand Management – cont.

• Typical conditions for cheaper tickets (fences)

- Advance booking
- No refund or penalty on refund
- Penalty for schedule change
- No stopover privileges
- Round trip ticket
- No interline privileges

Price discrimination by passenger segment

Consumers and large carriers

- All other factors held constant, many consumers prefer large carriers over small carriers
- Three reasons:
 - Information costs
 - Large carriers have a large network, while many small carriers have limited service options
 - Quality of service
 - For example, connections are easier for a single airline, rather than switching airlines, as well as lower chance of lost or delayed baggage with a single airline connection
 - Frequent flyer programs
 - More destinations makes it easier to collect points

Source: Tretheway and Oum (1992)

Hubs and passenger demand

Hub disutility

- Passengers are affected by the number of transfers
 - Passengers generally are willing to pay more to avoid transfers
 - Hub connections disutility has been estimated at \$30

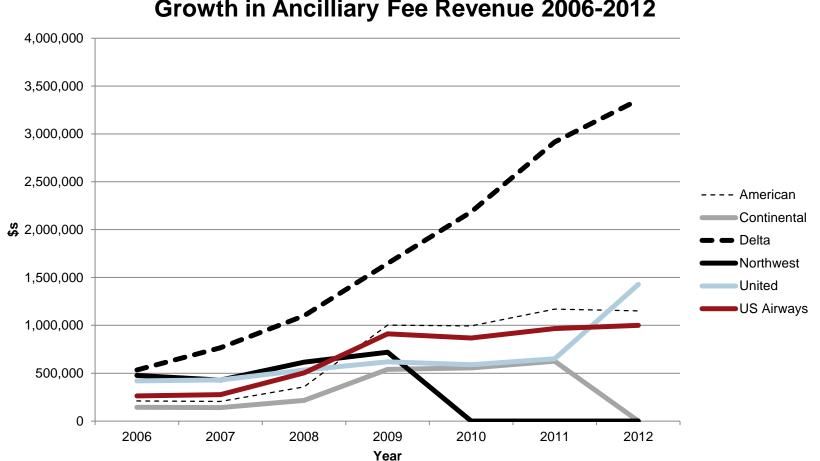
Price effects

- Both positive and negative effects
 - Increased fuel and crew costs of hub operation can be offset by increased passenger traffic
 - Can lead to viable service to smaller communities, and overall increase in demand

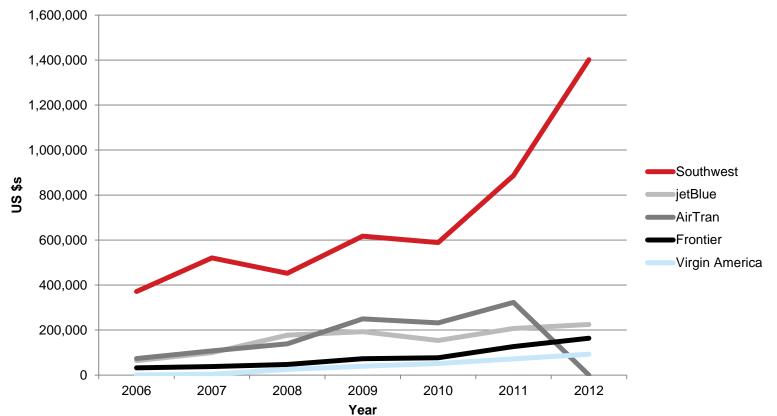
Source: Tretheway and Oum (1992)

Overbooking

- A portion of travellers will not show up for their flight
 - Business travellers more often than leisure travellers
- Airlines may offset loss of revenue by booking more seats than available
 - Based on historic "no-show" rates
- This can be an issue when all passengers are present for the flight
 - Airlines offer incentives to passengers willing to take another flight
- Non-refundability of ticket prevents no-show


 Source: Freesenue 1055

Add-On Pricing (Product Unbundling)


- Bundling moves people away from optimal consumption point
- Bundling requires 'bribing' customers to take good with bad
- Unbundling lets customer build product of choice for a given trip – create value
- Spirit (U.S. ULCC) lowers base fare when unbundling
- Airlines generating significant revenue and uncoupling from GDP

Growth in Ancilliary Fee Revenue 2006-2012

Growth in Ancilliary Fee Revenue 2006-2012

Thank You!

www.intervistas.com