Lecture Outline

• Terms and Definitions
 ▪ Demand, Load and Spill
 ▪ Airline Demand Variability

• Spill Analysis: Boeing Spill Model
 ▪ Estimating Spill Given Observed Load Factors
 ▪ Use of Spill Tables
 ▪ Impacts of Different Size Aircraft

• Applications to Cabin Configuration

• Spill and Recapture Across Multiple Flights

• Impacts of RM on Spill
Terms and Definitions

- **DEMAND**: Total number of potential passengers wishing to book a seat on a given flight leg
 - Total potential demand at current fare structure

- **LOAD**: Number of passengers actually carried
 - When demand is less than capacity, LOAD = DEMAND

- **SPILL**: Number of potential passengers unable to book a seat due to insufficient capacity
 - Also known as “rejected demand”
 - Equal to DEMAND minus LOAD
“Spill” vs. “Denied Boardings”

- **Spill** occurs when potential demand for a flight leg is greater than the physical capacity of the aircraft
 - Spill can occur whether or not the airline is using overbooking methods
 - For spill analysis, typically assume no overbooking or “perfect” overbooking in which no-shows are predicted correctly
 - Spill occurs during the pre-departure booking process

- **Denied Boardings** occur on overbooked flights when more passengers than capacity show up
 - Denied boardings occur because the airline overbooked too aggressively, not because the aircraft was too small
 - DBs occur at the gate just before departure
Airline Demand Variability

- **Total demand for a flight leg varies**
 - Cyclically: Season of year; day of week; time of day
 - Stochastically: Random fluctuations in demand

- **Total demand potential for a flight leg represented with a Gaussian distribution**
 - Mean and standard deviation over a schedule period
 - K-factor = coefficient of variation = \(\frac{\sigma}{\mu} \)

- **K-factor of total unconstrained demand**
 - Can vary by route, by schedule period
 - Higher for leisure markets and longer schedule periods
 - Typically assumed to range from 0.20 to 0.40

- **But, total unconstrained demand cannot be observed**
 - Unless aircraft capacity is always too large for demand
Example: Individual Flight Departures

<table>
<thead>
<tr>
<th>DATE</th>
<th>LOAD</th>
<th>CAP</th>
<th>LF</th>
<th>SPILL?</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 APR</td>
<td>92</td>
<td>125</td>
<td>74%</td>
<td>NO</td>
</tr>
<tr>
<td>08 APR</td>
<td>125</td>
<td>125</td>
<td>100%</td>
<td>LIKELY</td>
</tr>
<tr>
<td>15 APR</td>
<td>108</td>
<td>125</td>
<td>86%</td>
<td>NO</td>
</tr>
<tr>
<td>22 APR</td>
<td>83</td>
<td>125</td>
<td>66%</td>
<td>NO</td>
</tr>
<tr>
<td>29 APR</td>
<td>123</td>
<td>125</td>
<td>98%</td>
<td>POSSIBLY</td>
</tr>
</tbody>
</table>

- Sample of n=5 flight departures with ALF=85.0% given capacity 125 seats – spill occurred in 2/5 cases.
Frequency Histogram of Flight Loads

Source: Boeing (1978)
Demand with Mean=125, Sigma=45

Spill (rejected demand and lost revenue) is reduced with larger capacity.
Spill Analysis: Boeing Spill Model

• **Objective:** Estimate actual “unconstrained” demand for a sample of flights where spill has occurred.

• **Observations:** Sample of flight leg loads (constrained) over a representative time period:
 - Perhaps adjusted for future seasonality and/or traffic growth

• **Assumptions:**
 - Unconstrained demand for a series of flight departures can be represented by a Gaussian distribution
 - We use observed Average Load Factor and an **ASSUMED** k-factor to estimate unconstrained demand

• **Boeing Spill Tables can be used to minimize calculations**
Example: Sample of Flight Departures

- Mean load = 106.2 passengers (85.0% LF) with observed standard deviation = 18.6
 - But, observed sigma constrained by capacity
 - Both mean and sigma are therefore smaller than actual demand
- Assume $K=0.35$ for unconstrained demand
 - Based on “market knowledge” and expected demand variability during schedule period under consideration
- Spill Table ($K=0.35$) shows relationships between
 - AVERAGE LOAD FACTOR = Mean Load/Capacity
 - DEMAND FACTOR = Mean Demand/Capacity
 - SPILL FACTOR = Mean Spill/Capacity
- “Spill Rate” = Mean Spill / Mean Demand
 - Historical target for spill rate is 5-10% or less
Spill Table for $K=0.35$

DF and SF given LOAD FACTOR

<table>
<thead>
<tr>
<th>LF</th>
<th>DF</th>
<th>SF</th>
<th>LF</th>
<th>DF</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.700</td>
<td>0.716</td>
<td>0.016</td>
<td>0.705</td>
<td>0.722</td>
<td>0.017</td>
</tr>
<tr>
<td>0.710</td>
<td>0.729</td>
<td>0.019</td>
<td>0.715</td>
<td>0.735</td>
<td>0.020</td>
</tr>
<tr>
<td>0.720</td>
<td>0.742</td>
<td>0.022</td>
<td>0.725</td>
<td>0.749</td>
<td>0.024</td>
</tr>
<tr>
<td>0.730</td>
<td>0.755</td>
<td>0.025</td>
<td>0.735</td>
<td>0.762</td>
<td>0.027</td>
</tr>
<tr>
<td>0.740</td>
<td>0.769</td>
<td>0.029</td>
<td>0.745</td>
<td>0.776</td>
<td>0.031</td>
</tr>
<tr>
<td>0.750</td>
<td>0.784</td>
<td>0.034</td>
<td>0.755</td>
<td>0.791</td>
<td>0.036</td>
</tr>
<tr>
<td>0.760</td>
<td>0.799</td>
<td>0.039</td>
<td>0.765</td>
<td>0.806</td>
<td>0.041</td>
</tr>
<tr>
<td>0.770</td>
<td>0.814</td>
<td>0.044</td>
<td>0.775</td>
<td>0.822</td>
<td>0.047</td>
</tr>
<tr>
<td>0.780</td>
<td>0.830</td>
<td>0.050</td>
<td>0.785</td>
<td>0.839</td>
<td>0.054</td>
</tr>
<tr>
<td>0.790</td>
<td>0.847</td>
<td>0.057</td>
<td>0.795</td>
<td>0.856</td>
<td>0.061</td>
</tr>
<tr>
<td>0.800</td>
<td>0.865</td>
<td>0.065</td>
<td>0.805</td>
<td>0.874</td>
<td>0.069</td>
</tr>
<tr>
<td>0.810</td>
<td>0.884</td>
<td>0.074</td>
<td>0.815</td>
<td>0.894</td>
<td>0.079</td>
</tr>
<tr>
<td>0.820</td>
<td>0.904</td>
<td>0.084</td>
<td>0.825</td>
<td>0.914</td>
<td>0.089</td>
</tr>
<tr>
<td>0.830</td>
<td>0.925</td>
<td>0.095</td>
<td>0.835</td>
<td>0.936</td>
<td>0.101</td>
</tr>
<tr>
<td>0.840</td>
<td>0.948</td>
<td>0.108</td>
<td>0.845</td>
<td>0.960</td>
<td>0.115</td>
</tr>
<tr>
<td>0.850</td>
<td>0.972</td>
<td>0.122</td>
<td>0.855</td>
<td>0.985</td>
<td>0.130</td>
</tr>
<tr>
<td>0.860</td>
<td>0.999</td>
<td>0.139</td>
<td>0.865</td>
<td>1.013</td>
<td>0.148</td>
</tr>
<tr>
<td>0.870</td>
<td>1.028</td>
<td>0.158</td>
<td>0.875</td>
<td>1.043</td>
<td>0.168</td>
</tr>
<tr>
<td>0.880</td>
<td>1.060</td>
<td>0.180</td>
<td>0.885</td>
<td>1.077</td>
<td>0.192</td>
</tr>
<tr>
<td>0.890</td>
<td>1.095</td>
<td>0.205</td>
<td>0.895</td>
<td>1.115</td>
<td>0.220</td>
</tr>
</tbody>
</table>

- Assuming underlying demand has $K=0.35$
- Then, 0.850 observed average load factor translates to 0.972 demand factor and 0.122 spill factor
- Load factor = demand factor – spill factor

Source: Boeing
Spill Table Calculations

• Given observed LF and assumed K=0.35
 - DF = 0.972 from Table, and SF = 0.122
 - [Note that DF = LF + SF, always!]

• We can now calculate the following estimates:
 - Mean total demand = DF * Capacity = 0.972*125= 121.5
 - Std deviation of Demand = 0.35 * 121.5 = 42.5
 - Mean spill per departure = SF * Capacity = 0.122*125 = 15.3
 [NOTE also: Mean Spill = Mean Demand – Mean Load]
 - Spill Rate = Mean Spill/Mean Demand = 15.3 / 121.5 = 12.6%
Impact of Larger Capacity (140 seats)

- With estimated Mean Demand = 121.5 and Cap=140
 - Demand Factor = 121.5/140 = 0.868
 - [Mean Demand does not change with a change in capacity!]

- From Spill Table (K=0.35), with DF=0.868
 - New average LF expected to be 0.802 (with some interpolation)
 - New mean load = 0.802 * 140 = 112.3 passengers, an increase of 6.1 passengers per departure
 - New average spill = 0.066*140 = 9.2 passengers, a decrease of 6.1 passengers per departure
 - New spill rate = 9.2/121.5 = 7.6%

- Use of larger aircraft increases load, reduces spill, but decreases load factor. Demand does not change.
Spill Table for K=0.35

LF and SF given DEMAND FACTOR

<table>
<thead>
<tr>
<th>DF</th>
<th>LF</th>
<th>SF</th>
<th>DF</th>
<th>LF</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>.800</td>
<td>.761</td>
<td>.039</td>
<td>.805</td>
<td>.764</td>
<td>.041</td>
</tr>
<tr>
<td>.810</td>
<td>.767</td>
<td>.043</td>
<td>.815</td>
<td>.771</td>
<td>.044</td>
</tr>
<tr>
<td>.820</td>
<td>.774</td>
<td>.046</td>
<td>.825</td>
<td>.777</td>
<td>.048</td>
</tr>
<tr>
<td>.830</td>
<td>.780</td>
<td>.050</td>
<td>.835</td>
<td>.783</td>
<td>.052</td>
</tr>
<tr>
<td>.840</td>
<td>.786</td>
<td>.054</td>
<td>.845</td>
<td>.789</td>
<td>.056</td>
</tr>
<tr>
<td>.850</td>
<td>.792</td>
<td>.058</td>
<td>.855</td>
<td>.794</td>
<td>.061</td>
</tr>
<tr>
<td>.860</td>
<td>.797</td>
<td>.063</td>
<td>.865</td>
<td>.800</td>
<td>.065</td>
</tr>
<tr>
<td>.870</td>
<td>.803</td>
<td>.067</td>
<td>.875</td>
<td>.805</td>
<td>.070</td>
</tr>
<tr>
<td>.880</td>
<td>.808</td>
<td>.072</td>
<td>.885</td>
<td>.811</td>
<td>.074</td>
</tr>
<tr>
<td>.890</td>
<td>.813</td>
<td>.077</td>
<td>.895</td>
<td>.816</td>
<td>.079</td>
</tr>
<tr>
<td>.900</td>
<td>.818</td>
<td>.082</td>
<td>.905</td>
<td>.820</td>
<td>.085</td>
</tr>
<tr>
<td>.910</td>
<td>.823</td>
<td>.087</td>
<td>.915</td>
<td>.825</td>
<td>.090</td>
</tr>
<tr>
<td>.920</td>
<td>.828</td>
<td>.092</td>
<td>.925</td>
<td>.830</td>
<td>.095</td>
</tr>
<tr>
<td>.930</td>
<td>.832</td>
<td>.098</td>
<td>.935</td>
<td>.834</td>
<td>.101</td>
</tr>
<tr>
<td>.940</td>
<td>.837</td>
<td>.103</td>
<td>.945</td>
<td>.839</td>
<td>.106</td>
</tr>
<tr>
<td>.950</td>
<td>.841</td>
<td>.109</td>
<td>.955</td>
<td>.843</td>
<td>.112</td>
</tr>
<tr>
<td>.960</td>
<td>.845</td>
<td>.115</td>
<td>.965</td>
<td>.847</td>
<td>.118</td>
</tr>
<tr>
<td>.970</td>
<td>.849</td>
<td>.121</td>
<td>.975</td>
<td>.851</td>
<td>.124</td>
</tr>
<tr>
<td>.980</td>
<td>.853</td>
<td>.127</td>
<td>.985</td>
<td>.855</td>
<td>.130</td>
</tr>
<tr>
<td>.990</td>
<td>.857</td>
<td>.133</td>
<td>.995</td>
<td>.859</td>
<td>.136</td>
</tr>
</tbody>
</table>

- Assuming underlying demand has K=0.35
- Then, 0.870 estimated demand factor translates to 0.803 average load factor and 0.067 spill factor
- Demand factor = load factor + spill factor

Source: Boeing
DF vs. LF for Demand (K=0.35)
Alternative Aircraft Capacities

- Should the airline operate a 140-seat aircraft to serve this demand distribution?

- Increasing capacity by 15 seats expected to increase average load per departure by 6.1 passengers
 - Increase in revenue per flight = 6.1 passengers * average fare

- But, changing this fleet assignment to a larger aircraft will increase operating costs as well
 - Increase in operating costs = difference in cost/block-hour * number of block-hours for flight leg in question
Applications to Cabin Configuration

• Additional seats in Premium Class reduce premium spill and increase revenues; but reduction in Economy seats increases economy spill and reduces economy revenue

• Spill model can be used to estimate the trade-off in premium revenue gain vs. economy revenue loss
Cabin Configurations for B767-300

18 first
60-in pitch

46 business
38-in pitch

154 premium
32-in pitch

218 passengers

24 first
38-in pitch

245 premium
32-in pitch

269 passengers

32-in pitch

286 passengers

Source: Boeing Commercial Airplanes
Spill and Recapture Across Multiple Flights

Airline 1’s flights:
- have a certain number of passengers getting their first choice on their desired flight
- have some number getting recaptured on other flights
- attract some passengers from Airline 2 (spill-in)
- have some passengers sell-up to get on their desired flight
- lose some number of passengers either to Airline 2 (spill-out) or through No Go

Source: Abramovich (2013)
Reduced Flight 1 Capacity

With reduced capacity on Flight 1, we would expect:

- a decreased number of passengers to get their first choice on Flight 1
- increased recapture on other flights
- to attract some passengers from Airline 2 (spill-in)
- more passengers to sell-up
- to lose more passengers either to Airline 2 (spill-out) or through No Go, given fewer available seats

Source: Abramovich (2013)
Increase Flight 1 Capacity

Flight 1 Flight 2 Flight 3

With increased capacity on Flight 1, we would expect:

- low LFs on Flight 1 and some changes in LFs on other flights
- an increased number of passengers to get their first choice on Flight 1
- decreased recapture on all flights as more passengers get their first choices
- to attract some passengers from Airline 2 (spill-in)
- virtually no sell-up due to the largely increased capacity
- to lose fewer passengers either to Airline 2 (spill-out) or through No Go, given far more available seats

Source: Abramovich (2013)
RM Systems Reject Demand

- Revenue management system generates booking limits for each class to maximize revenue
 - Protect seats for high fare passengers, reject low-fare bookings when demand factor is high

<table>
<thead>
<tr>
<th>CABIN CAPACITY =</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVAILABLE SEATS =</td>
<td>135</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOOKING CLASS</th>
<th>AVERAGE FARE</th>
<th>SEATS BOOKED</th>
<th>FORECAST DEMAND MEAN</th>
<th>SIGMA</th>
<th>JOINT PROTECT LIMIT</th>
<th>BOOKING LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>$ 670</td>
<td>0</td>
<td>12</td>
<td>7</td>
<td>6</td>
<td>135</td>
</tr>
<tr>
<td>M</td>
<td>$ 550</td>
<td>0</td>
<td>17</td>
<td>8</td>
<td>23</td>
<td>129</td>
</tr>
<tr>
<td>B</td>
<td>$ 420</td>
<td>0</td>
<td>10</td>
<td>6</td>
<td>37</td>
<td>112</td>
</tr>
<tr>
<td>V</td>
<td>$ 310</td>
<td>0</td>
<td>22</td>
<td>9</td>
<td>62</td>
<td>98</td>
</tr>
<tr>
<td>Q</td>
<td>$ 220</td>
<td>0</td>
<td>27</td>
<td>10</td>
<td>95</td>
<td>73</td>
</tr>
<tr>
<td>L</td>
<td>$ 140</td>
<td>0</td>
<td>47</td>
<td>14</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>SUM</td>
<td>0</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Abramovich (2013)
Impacts of RM on Marginal Revenue

- Marginal revenue per additional seat decreases with increasing capacity.
- Most additional bookings are in lower classes.

Standard Leg RM

Fare Class Mix
Marginal Revenue

Source: Abramovich (2013)